Cip4, a new COP1 target, is a nucleus-localized positive regulator of Arabidopsis photomorphogenesis.

نویسندگان

  • Y Y Yamamoto
  • X Deng
  • M Matsui
چکیده

Arabidopsis COP1 acts within the nucleus to repress photomorphogenesis, and its nuclear abundance is negatively regulated by light. Here, we report the identification of a COP1-interactive partner, CIP4. CIP4 is a nuclear protein and a potent transcription coactivator. Conditional suppression of CIP4 expression resulted in an elongated hypocotyl and reduced chlorophyll content in the light, indicating that CIP4 is required for the promotion of photomorphogenesis. Furthermore, CIP4 was revealed to act downstream of multiple photoreceptors as well as COP1 in mediating light control of development. CIP4 expression is light inducible and regulated by COP1. However, CIP4 does not play a role in mediating the light induction of anthocyanin accumulation. Together with our previous studies of CIP7 and HY5, our data suggest that COP1 interacts directly with and regulates multiple physiological targets, which in turn regulate distinct sets of light-regulated responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis.

Arabidopsis COP1 acts to repress photomorphogenesis in the absence of light. It was shown that in the dark, COP1 directly interacts with the bZIP transcription factor HY5, a positive regulator of photomorphogenesis, and promotes its proteasome-mediated degradation. Here we identify a novel bZIP protein HYH, as a new target of COP1. We identify a physical and genetic interaction between HYH and ...

متن کامل

SHORT HYPOCOTYL IN WHITE LIGHT1, a serine-arginine-aspartate-rich protein in Arabidopsis, acts as a negative regulator of photomorphogenic growth.

Light is an important factor for plant growth and development. We have identified and functionally characterized a regulatory gene SHORT HYPOCOTYL IN WHITE LIGHT1 (SHW1) involved in Arabidopsis (Arabidopsis thaliana) seedling development. SHW1 encodes a unique serine-arginine-aspartate-rich protein, which is constitutively localized in the nucleus of hypocotyl cells. Transgenic analyses have re...

متن کامل

COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a well-known E3 ubiquitin ligase, functions as a central regulator of plant growth and photomorphogenic development in plants, including hypocotyl elongation. It has been well-established that, in darkness, COP1 targets many photomorphogenesis-promoting factors for ubiquitination and degradation in the nucleus. However, increasing evidence has shown that ...

متن کامل

Light Regulation of Plant Development: HY5 Genomic Binding Sites

Photomorphogenesis is a critical developmental process in plants involving numerous signaling pathways that coordinately regulate the inhibition of stem elongation, differentiation of chloroplasts, accumulation of chlorophyll, and leaf expansion that accompany the transition from dark to light as a seedling emerges from the soil. Arabidopsis HY5 encodes a bZIP transcription factor that is a pos...

متن کامل

CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis.

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a negative regulator of photomorphogenesis in Arabidopsis thaliana. COP1 functions as an E3 ubiquitin ligase, targeting select proteins for proteasomal degradation in plants as well as in mammals. Among its substrates is the basic domain/leucine zipper (bZIP) transcription factor ELONGATED HYPOCOTYL5 (HY5), one of the key regulators of photomorphogenes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2001